!Happy Birthday GW150914!

Just a year ago today, after travelling some 1.4 billion years, the gravitational wave chirp we christened GW150914 passed through Earth. It disturbed the two gravitational wave detectors of the LIGO observatory enough for us to notice it, to get excited about it, and to get a large fraction of the general public excited about it! But GW150914 just kept on going and is now one further year along in its journey through the Universe. And it will keep going, spreading out and getting weaker but not otherwise being much disturbed, forever. Literally forever.

And GW150914 hardly noticed us! When we observe the Universe with our telescopes, detecting light or radio waves or gamma rays from the enormous variety of luminous objects out there, we capture the energy that enters our telescopes. The photons from a distant star terminate their journeys in our telescopes, leaving a tiny hole in the ever expanding cloud of photons that we didn’t catch. We simply eat up the ones we catch. But GW150914 transferred an absolutely minuscule amount of its energy into the LIGO detectors. We and the famous chirp enjoyed a brief handshake, and then it was gone.

Not that GW150914 had little energy to give: quite the opposite. At its peak, it was 20% as “bright” as the full moon! For the few milliseconds of its passage, GW150914 outdid any star in the sky. Of course, its energy wasn’t in the form of light, so it wasn’t visible to anyone who by chance happened to be looking straight at it. But the energy was there: the gravitational wave energy going through that lucky stargazer’s pupil was 20% of the light energy that would have gone in, had the stargazer turned to gaze at the full moon. The difference, as I noted above, is that the moon’s light energy would have been deposited in the stargazer’s retina; the gravitational wave energy didn’t stay around but just kept going through, leaving almost nothing behind.

It was the same story with all the other objects that GW150914 had encountered before it reached Earth. And it will be the same in the future, which is why the chirp will keep going, forever.

This seeming lack of engagement on the part of GW150914, its reluctance to share its energy with us, comes basically from the extreme weakness of gravity itself. Light and other forms of electromagnetic radiation connect to electric charges, and the coupling between them is strong because the electric force is strong, much stronger than gravity.

There is a simple way to get a feeling for the big disparity between these two forces. Pick up a tennis ball and you are demonstrating the immense superiority of the electric force over gravity. The weight of the ball is the result of all the atoms in our entire planet pulling back on it with their gravitational attraction. The electric force governs the structure of atoms and molecules, and regulates chemistry and the structure of materials. Your arm muscles’ chemistry easily defeats the total gravitational attraction, even though the muscle mass doing the work is less than one part in 10^24 of Earth’s mass. (That is, Earth has one million million million million times more mass than the muscles of one of your arms!) So when GW150914 passed through you (as it did one year ago), it was too weak to disturb you, so of course almost no energy was transferred to you.

How is this weakness consistent with the fact that it was carrying such a huge amount of energy? Here the best way to understand this apparent contradiction is to go back to Einstein’s basic picture of gravity, that gravity is the warping of space and time. It should be no surprise that it is exceedingly difficult to warp space. Before Einstein, nobody even thought it might be possible. A measure of how hard it is to bend space is that the waves of space that carry this warping, the gravitational waves, travel at the speed of light. Now, think about waves in other materials, and how stiffness of the material is related to the speed of the waves. Sound, for example, travels pretty fast through air but much faster through steel. Water waves travel rather slowly, but a crack in an ice sheet can streak across the sheet in no time flat.

By this measure, space is the stiffest medium we know, because its waves go at the speed of light, the fastest speed possible, a speed that is immensely faster than that of waves in any other material we know. But bending a stiff thing is hard, so bending space is hardest of all. To get GW150914 going required a huge energy input, even for a wave with such a weak effect on us. The chirp, as it started out, carried as much energy in total as one would get by converting the mass of three Suns into pure energy via Einstein’s famous E = m c². That was a blast equivalent to 10^34 Hiroshima-scale nuclear explosions. (That’s ten thousand million million million million million bombs!) All this energy came out in a fraction of a second. If you added up all the energy (in light, mainly) that all the stars and other objects in the entire Universe were putting out during that fraction of a second, you would come to a number that is 10 to 100 times smaller.

So our friend GW150914 was a messenger, giving us notice of an almost unimaginable event that was briefly more luminous in gravitational wave energy than the luminosity in light of the entire rest of the Universe put together. And that brings us to whose birthday today really is: that of the black hole that was formed in that inconceivably large gravitational-wave explosion. It was formed by the merging together of two pretty hefty black holes, one about 35 times as massive as the Sun and the other about 30 times. The black hole that was born on that day 1.4 billion years ago ended up with a mass of 62 solar masses. That is 3 less than the sum of 35 and 30: the deficit is the 3 solar masses that got converted into gravitational wave energy and set out across the Universe.

We know all this about GW150914’s pedigree because we were ready for this kind of message. We already knew how to read the information encoded in the message, encoded by the dynamics of Einstein’s gravity. That is a story for another time, for a future entry in my blog. For today, I and many of my colleagues in the gravitational wave collaboration are just going to raise a glass and wish GW150914 a very happy birthday, and many returns of the day! 🍾🎉

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s